

#15CongressGECP

How to treat uncommon EGFR mutations

Xabier Mielgo-Rubio, MD

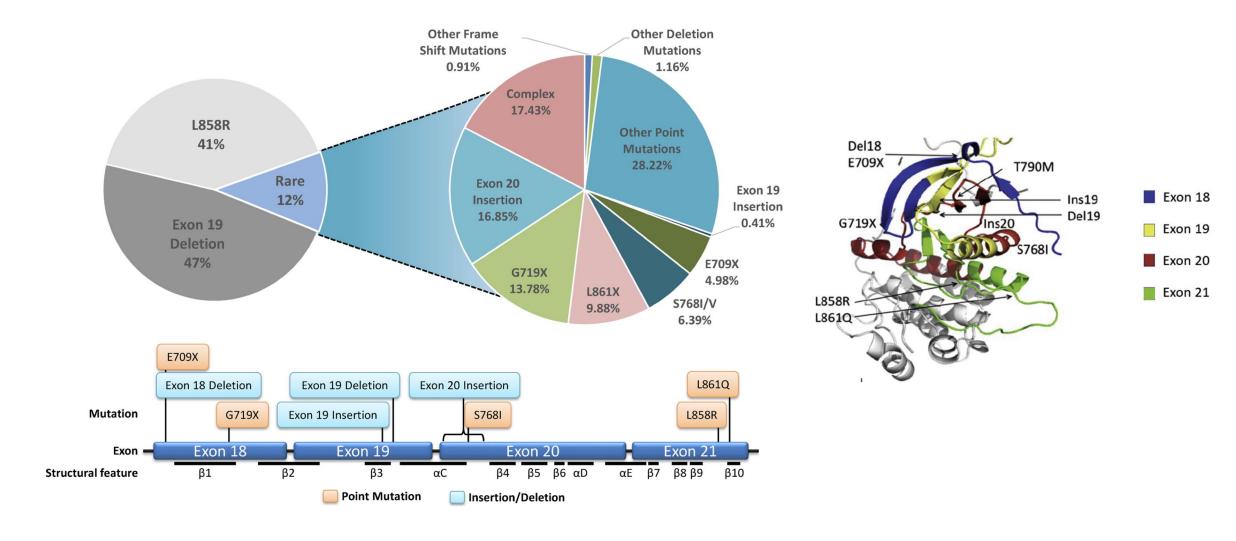
Unidad de Oncología Hospital Universitario Fundación Alcorcón, Madrid

Disclosures

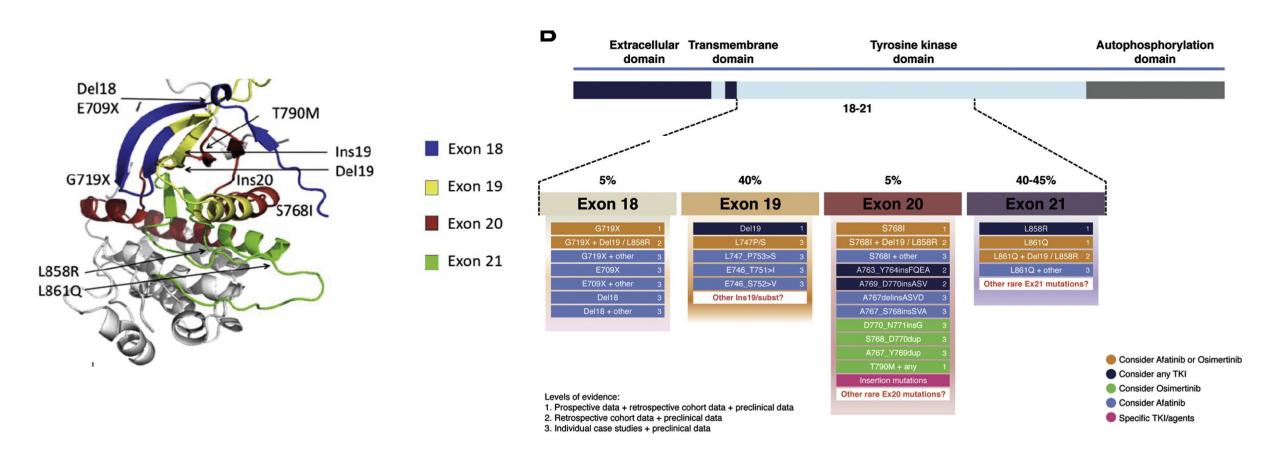
- Speaker or educational material: Astra Zeneca, Bristol Myers Squibb, Merck Sharp and Dohme, Novartis, Roche, Pfizer
- Consultant or Advisory Role: Astra Zeneca, Boehringer, Pfizer
- Research support: Bristol Myers Squibb

OUTLINE

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions


OUTLINE

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions


EGFR kinase domain mutations are hetereogeneous

EGFR kinase domain mutations classification by exon location

IASLC ATLAS OF

IN LUNG CANCER

Types of uncommon EGFR mutations

Uncommon EGFR mutations: ANYTHING NOT COMMON OR T790M

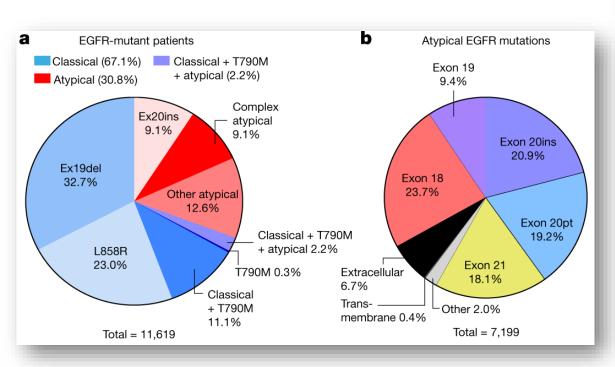
Exon 20 insertions

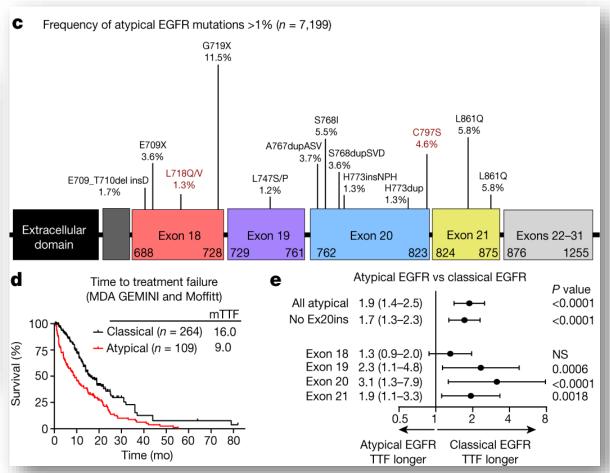
- The most common of the uncommon (≈ 12%)
- Very heterogenous
- NGS recommended

Compound EGFR mutations

- Any type of combination
- 4-26% of all EGFR mutations

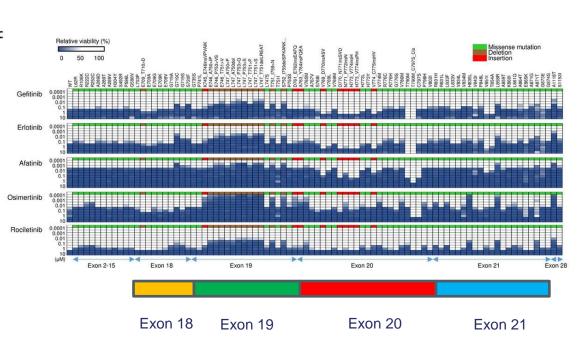
Other uncommon (or atypical) simple mutations

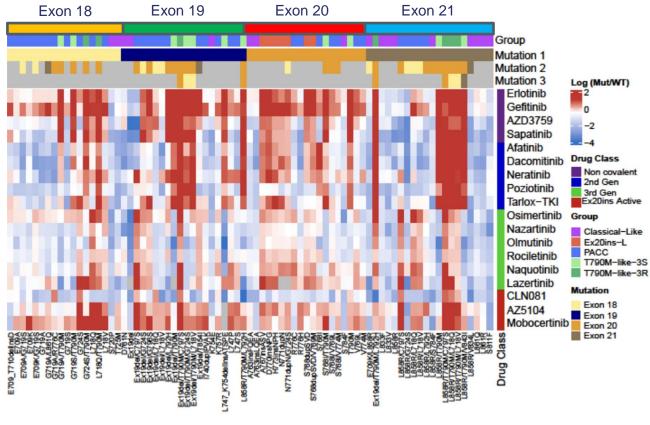

- All mutations except exon 19 deletions, L858R, and T790M mutations.
- G719X (ex18) > L861X (ex21) > S768I (ex20)
- Can be sensitive to EGFR TKIs



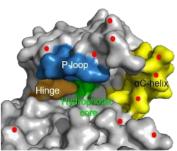
Types of uncommon EGFR mutations

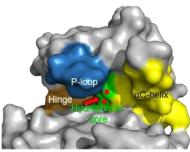
MD Anderson work: 5 patient databases with genomic profiling; 16715 EGFR-mutant patients



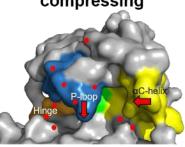


Uncommon EGFR mutations have differential responses to TKIs

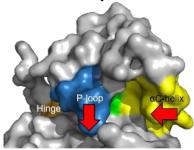



Structure/function classfication predicts drug response in EGFR mutant NSCLC

Classical-like


- Distal to drug binding pocket
- · Modest to no impact on drug binding

T790M-like


- · At least one mutation in hydrophobic core
- Increased affinity for ATP compared to classical-like mutations
- Two subgroups:
 - T790M-like-3S
 - T790M-like-3R

P-loop αC-helix compressing

- Proximal to drug binding pocket
- Direct or indirect impact on drug binding via moderate displacement of P-loop and/or αC-helix

Exon 20 loop insertions

- C-terminal loop of a C-helix
- Indirect and substantial impact on drug binding (both P-loop and αC-helix)
- Two subgroups:
 - Ex20ins-near loop (light red)
 - · Ex20ins- far loop (dark red)

Representative Mutations

LOSOD	1/7545
L858R	K754E
Exon 19 deletions	T725M
S720P	L833F/V
L861Q/R	A763insFQEA
S811F	A763insLQEA

T790M-3S
Classical/T790M
G719X/T790M
L747 K745delinsATSPE
S768I/T790M

T790M-3S	T790M-3R
lassical/T790M	Ex19del/T790M/L792H
719X/T790M	L858R/T790M/L718X
747 K745delinsATSPE	Classical/T790M/C797
768I/T790M	

Primary	Acquired
G719X	C797S
S768I	L792H
L747P/S	G724S
E709_T710del insD	L718X
_V769L	T854I

Ex20ins-NL	Ex20ins-FL
S768dupSVD	H773insNPH
A767dupASV	H773dupH
D770insNPG	V774insAV
D770del insGY	V774insPR

Drug Sensitivity/Selectivity

Third-generation Second-generation First-generation Exon20ins-specific

T790M-3S Third-generation **PKCi** ALK

Second-generation First-generation

T790M-3R **PKCi**

ALKi Third-generation Second-generation First-generation

Second-generation

First-generation Ex20ins-specific

Third-generation

Ex20ins-NL Ex20ins-specific Second-generation

Third-generation First-generation

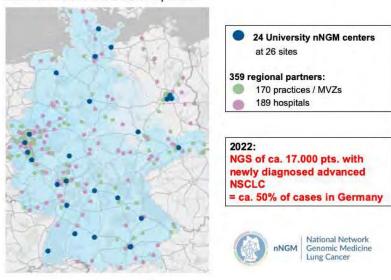
Ex20ins-FL Ex20ins-specific

Second-generation Third-generation First-generation

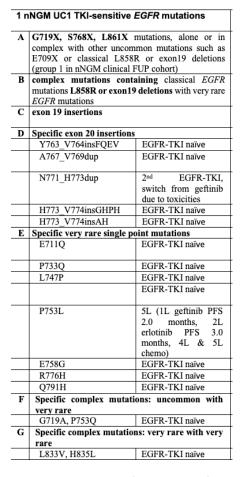
Mutation resulted structural change

Function

Drug sensitivity

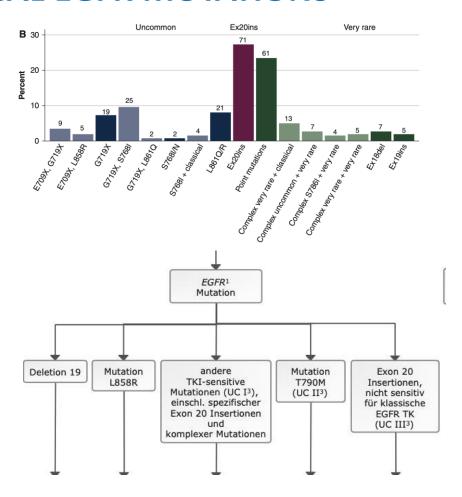


ANALYSIS OF CLINICAL ACTIONABILITY OF ATYPICAL EGFR MUTATIONS


nNGM

National Network Genomic Medicine Lung Cancer

Funded by the German Cancer Aid since 2018 and the health insurance companies



nNGM

Novel classification of clinical actionability

Janning, Ann Oncol 2022

Uptake into national NSCLC guideline 2022

NOVEL NNGM CLASSIFICATION OF RARE EGFR MUTATIONS

UC1: TKI-sensitive

A G719X, S768X, L861X mutations, alone or in

complex with other uncommon mutations such as

	E709X or classical L858R or exon19 deletions								
	(group 1 in nNGM clinical I								
В	complex mutations conta								
	mutations L858R or exon19	deletions with very rare							
	EGFR mutations								
C	exon 19 insertions								
D	Specific exon 20 insertions								
	Y763_V764insFQEV	EGFR-TKI naïve							
	A767_V769dup	EGFR-TKI naïve							
	N771 H773dup	2 nd EGFR-TKI,							
		switch from geftinib							
		due to toxicities							
	H773_V774insGHPH	EGFR-TKI naïve							
	H773_V774insAH	EGFR-TKI naïve							
E	Specific very rare single point mutations								
	E711Q	EGFR-TKI naïve							
	P733Q	EGFR-TKI naïve							
	L747P EGFR-TKI naïve								
	EGFR-TKI naïve								
	P753L 5L (1L geftinib PFS								
	17332	2.0 months, 2L							
		erlotinib PFS 3.0							
		months, 4L & 5L							
		chemo)							
	E758G	EGFR-TKI naïve							
	R776H	EGFR-TKI naïve							
	Q791H	EGFR-TKI naïve							
F	Specific complex mutation	ons: uncommon with							
	very rare								
	G719A, P753Q	EGFR-TKI naïve							
G	Specific complex mutation	is: very rare with very							
	rare	_							

UC2: de Novo T790M

UC3: Exon20 Insertions

UC4: Ultrarare Point/Compound Mutations

- Very rare single point mutations*
- Complex mutations: with very uncommon rare*
- Complex mutations: very rare with very rare*

EGFR TKI (Afa, Osi)

EGFR-TKI naïve

L833V, H835L

Osimertinib

Preclinical testing/MTB

except those mentioned in nNGM UC1

OUTLINE

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

OUTLINE

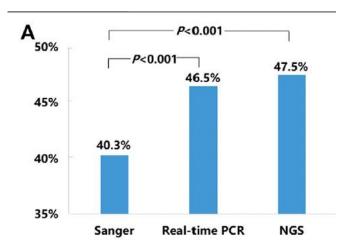
- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

Finding the needle in the haystack

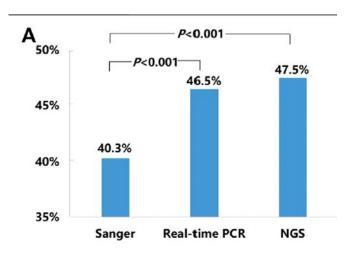
UNMET MEDICAL NEED

1-3% OF NSCLC patients with rare/atypical EGFR mutations

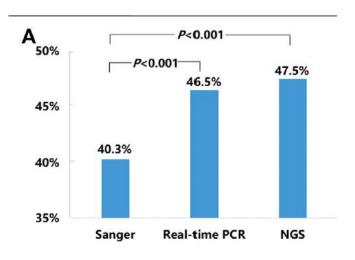
0,7-2% w/o Exon20 Insertions and T790M



Significant subgroup of patients with unmet medical need: > 2000 newly diagnosed patients in EU/Y

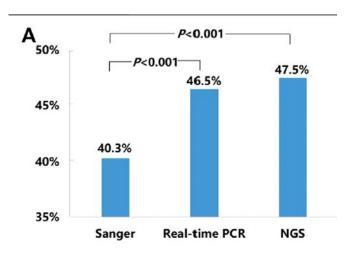

Mutation spectrum of EGFR from 21324 chinese NSCLC patients tested by multiple methods - CAP accredited lab

Mutation spectrum of EGFR from 21324 chinese NSCLC patients tested by multiple methods - CAP accredited lab



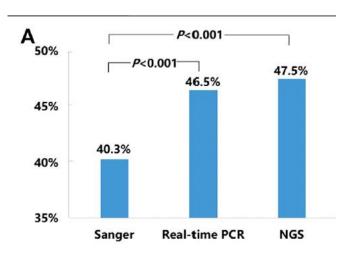
Specimens	Sanger sequencing	Real-time PCR	NGS		
Number of samples	5,244	13,329	2,751		
EGFR mutation rate	40.3%	46.5%	47.5%		
EGFR mutation types	46%	36%	76%		
Covered regions of EGFR	18-21 exons	18-21 exons hotspots ^a	All coding sequencing ^b		
Covered non-EGFR	No	No	Yes ^c		
Technical sensitivity	20%	1%	1%		
Recommended TCC	≥40%	≥1%	≥1%		
Mean TAT (days)	5	4	8		

Mutation spectrum of EGFR from 21324 chinese NSCLC patients tested by multiple methods - CAP accredited lab



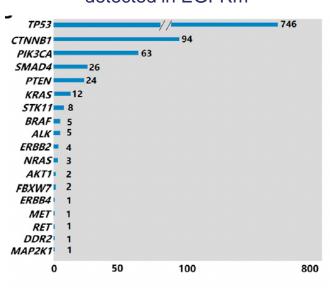
Specimens	Sanger sequencing	Real-time PCR	NGS		
Number of samples	5,244	13,329	2,751		
EGFR mutation rate	40.3%	46.5%	47.5%		
EGFR mutation types	46%	36%	76%		
Covered regions of EGFR	18-21 exons	18–21 exons hotspots ^a	All coding sequencing ^b		
Covered non-EGFR	No	No	Yes ^c		
Technical sensitivity	20%	1%	1%		
Recommended TCC	≥40%	≥1%	≥1%		
Mean TAT (days)	5	4	8		

Mutation spectrum of EGFR from 21324 chinese NSCLC patients tested by multiple methods - CAP accredited lab



Specimens	Sanger sequencing	Real-time PCR	NGS		
Number of samples	5,244	13,329	2,751		
EGFR mutation rate	40.3%	46.5%	47.5%		
EGFR mutation types	46%	36%	76%		
Covered regions of EGFR	18-21 exons	18–21 exons hotspots ^a	All coding sequencing ^b		
Covered non-EGFR	No	No	Yes ^c		
Technical sensitivity	20%	1%	1%		
Recommended TCC	≥40%	≥1%	≥1%		
Mean TAT (days)	5	4	8		

Mutation spectrum of EGFR from 21324 chinese NSCLC patients tested by multiple methods - CAP accredited lab

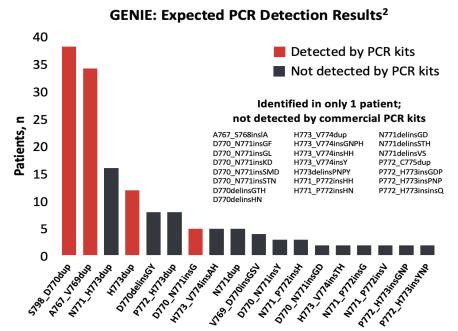

Specimens	Sanger sequencing	Real-time PCR	NGS		
Number of samples	5,244	13,329	2,751		
EGFR mutation rate	40.3%	46.5%	47.5%		
EGFR mutation types	46%	36%	76%		
Covered regions of EGFR	18-21 exons	18–21 exons hotspots ^a	All coding sequencing ^b		
Covered non-EGFR	No	No	Yes ^c		
Technical sensitivity	20%	1%	1%		
Recommended TCC	≥40%	≥1%	≥1%		
Mean TAT (days)	5	4	8		

Mutation spectrum of EGFR from 21324 chinese NSCLC patients tested by multiple methods - CAP accredited lab

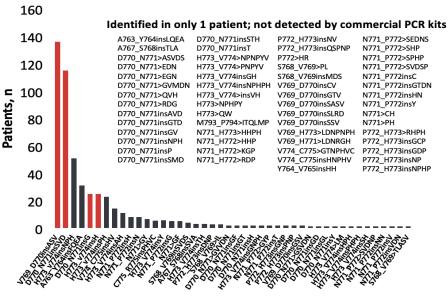
Non-EGFR co-mutations detected in EGFRm

Specimens	Sanger sequencing	Real-time PCR	NGS		
Number of samples	5,244	13,329	2,751		
EGFR mutation rate	40.3%	46.5%	47.5%		
EGFR mutation types	46%	36%	76%		
Covered regions of EGFR	18-21 exons	18–21 exons hotspots ^a	All coding sequencing ^b		
Covered non-EGFR	No	No	Yes ^c		
Technical sensitivity	20%	1%	1%		
Recommended TCC	≥40%	≥1%	≥1%		
Mean TAT (days)	5	4	8		

Of the 1,308 cases with EGFR mutations found by NGS, **65.3%** of the cases (854/1,308) harbored **non-EGFR mutations** in 18 tumorrelated genes, with TP53 being the most frequently mutated



Uncommon EGFR testing- What's best?


NGS Is More Comprehensive Than PCR for Testing EGFR Exon 20 Insertions

- Due to the heterogeneity, exon 20 insertions are not uniformly detected across commonly used PCR testing methods for EGFR mutations
- For detection of EGFR exon 20 insertions, NGS testing is more comprehensive than PCR

 PCR expected to miss 49.1% of EGFR ex20ins cases identified by NGS (PCR = 89; NGS = 175)

FoundationInsights®: Expected PCR Detection Results²

 PCR expected to miss 51.4% of EGFR ex20ins cases identified by NGS (PCR = 305; NGS = 627)

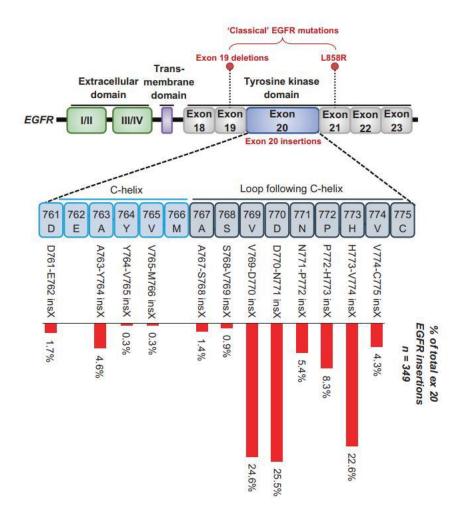
Uncommon EGFR testing- What's best?

NGS Is More Comprehensive Than PCR for Testing EGFR Exon 20 Insertions

 PCR expected to miss 49.1% of EGFR ex20ins cases identified by NGS (PCR = 89; NGS = 175) PCR expected to miss 51.4% of EGFR ex20ins cases identified by NGS (PCR = 305; NGS = 627)

OUTLINE

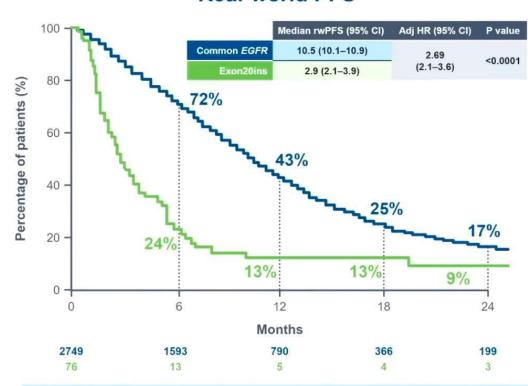
- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions


OUTLINE

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

EXON 20 INSERTIONS


Ins 20 variant Parental BarF3	Erlotinib ICSO values	Gefitinib	Afatinib	Osimertinib	Mobocertinib	Poziotinib	Amivantamab	BAY2576568	BLU-451	Oric-114	Furmonertinib	Tarloxitinib
WT EGFR	71.0	55.5	3.8	350.5	34.5	6.49	0.9	273	921	2.3	109.9	N/A
A763_Y764insFQEA	21.0	90.0	0.4	51.1	3.1	1.90	N/A	N/A	61	0.9	N/A	15.2
V769_D770insASV	80.0	287.4	10.3	61.1	2.1	2.13	0.6	15.3	78	N/A	14	675.9
D770_N771insNPG	469.0	941.0	9.0	27.2	1.3	0.73	N/A	N/A	7	2.7	11	N/A
D770_N771insSVD	528.0	918.4	41.3	226.7	6.5	1.5	1.4	11.1	53	N/A	N/A	990.1
H773_V774insNPH	191.2	1132.8	18.9	153.6	2.6	31.93	N/A	67.9	75	N/A	20	714.0
									ICS	0 >100	IC50 < 10 to ≤ 100	IC50 ≤ 10


RWD: EXON21Ins - worse prognosis

Real-world overall survival

75% increased risk of death with *EGFR* exon20ins compared with c*EGFR*; (Adj HR, 1.75 [95% CI, 1.45–2.13]; p<0.0001)

Real-world PFS

170% increased risk of progression or death on TKI treatment with EGFR exon20ins compared with cEGFR; (Adj HR, 2.7 [95% CI,2.06–3.55]; p<0.0001)

RWD response and outcomes in Exon20Ins

- Platin-based chemo alone or in combination with other therapy was the most common 1L therapy
- IO therapy was associated with poor confirmed rwORR and survival, consistently in the 1L and ≥2L
- EGFR TKIs had limited clinical benefit with a poor confirmed rwORR in 1L and ≥2L

Table 3. Confirmed rwORR and survival outcomes by therapy

Cohort	N	Confirmed rwORR (95% CI)	Median OS (95% CI), months	Median rwPFS (95% CI), months
1L: Platinum	41	19.5% (8.8%, 34.9%)	17.0 (10.5, 33.2)	5.7 (3.0, 10.9)
1L: IO + Platinum	16	18.8% (4.0%, 45.6%)	11.3 (5.6, NR)	4.5 (1.2, 10.3)
1L: IO monotherapy	11	9.1% (0.2%, 41.3%)	11.0 (1.2, NR)	3.1 (1.1, 5.2)
1L: EGFR TKI	37	2.7% (0.1%, 14.2%)	10.7 (3.4, 22.3)	3.3 (2.2, 6.6)
≥2L post-platinum: IO monotherapy	20	5.0% (0.1%, 24.9%)	7.1 (2.5, 10.1)	2.2 (1.7, 3.0)
≥2L post-platinum: EGFR TKI	10	10.0% (0.3%, 44.5%)	12.2 (1.3, 17.8)	3.4 (0.0, 5.9)

¹L, first line; CI, confidence interval; IO, immuno-oncology; mOS, median overall survival; mPFS, median progression-free survival; NR, not reached; rwORR, real-world overall response rate.

3rd G EGFR TKIs: Efficacy Results in Patients With EGFR Exon 20 Insertions

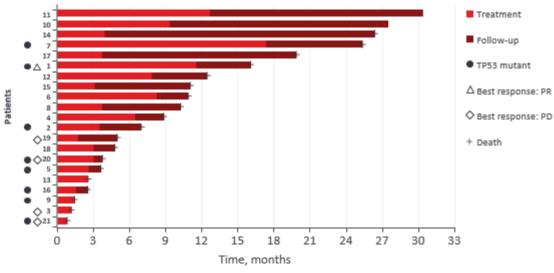
A Retrospective Study in EGFR Exon 20 Insertion+ NSCLC: Response to Osimertinib^{1,a}

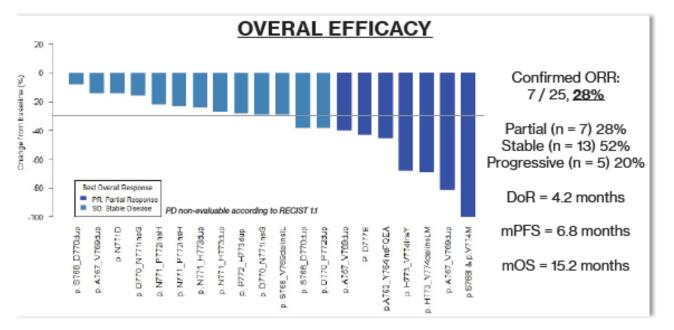
Mutation	ORR, %	PFS, Median, months	OS, Median, months		
Exon 20 mutations (n=21)	5% (1 PR)	3.6 (95% CI, 2.6-4.5)	8.7 (95% CI, 1.1-16.4)		

A Phase 2 Study in EGFR Exon 20 Insertion+ NSCLC: Response to Osimertinib^{2,b}: POSITION 20

Osimertinib in Treating Patients With Stage IIIB-IV or Recurrent Non-small Cell Lung Cancer With EGFR Exon 20 Insertion Mutations

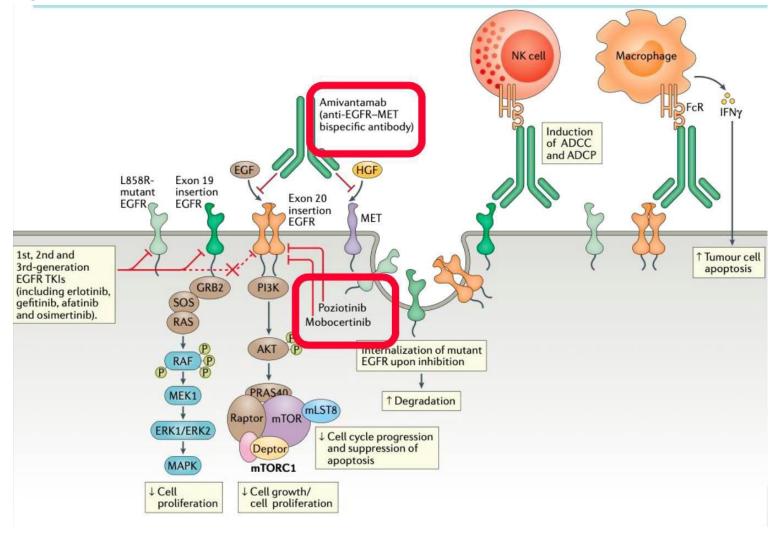
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.


ClinicalTrials.gov Identifier: NCT03191149


Recruitment Status ①: Suspended (Other - response analysis)

First Posted ①: June 19, 2017

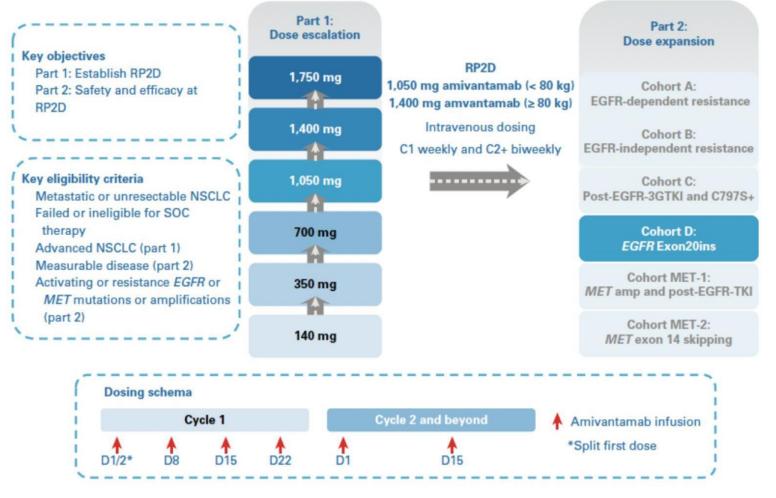
Last Update Posted ①: February 2, 2022



Exon20Ins: new therapeutic options

- Amivantamab (bispecific c-MET-EGFR antibody)
- Exon20lns specific TKI
 - Mobocertinib
 - Poziotinib
 - Others

Friedlander, Nat Rev Clin Oncol 2021

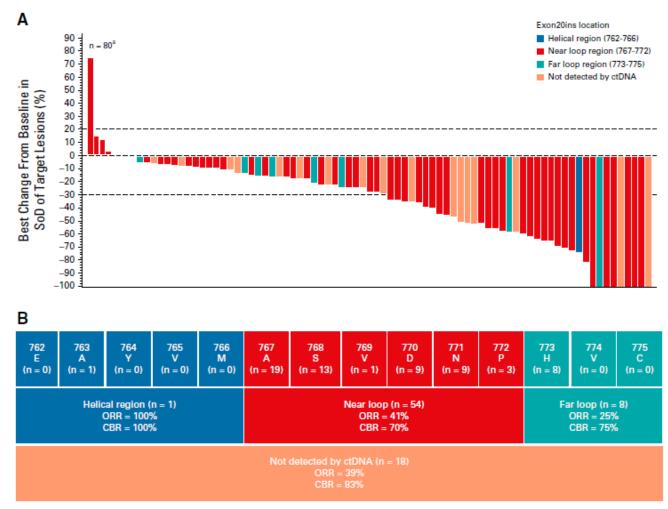


Exon20Ins - AMIVANTAMAB

CHRYSALIS 1: Amivantamab (tras varias líneas de tratamiento)

Phase I/II

Phase I/II


Median PFS was 8.3 months (95% CI, 6.5 to 10.9) by BICR and investigator (95% CI, 5.5 to 10.6)

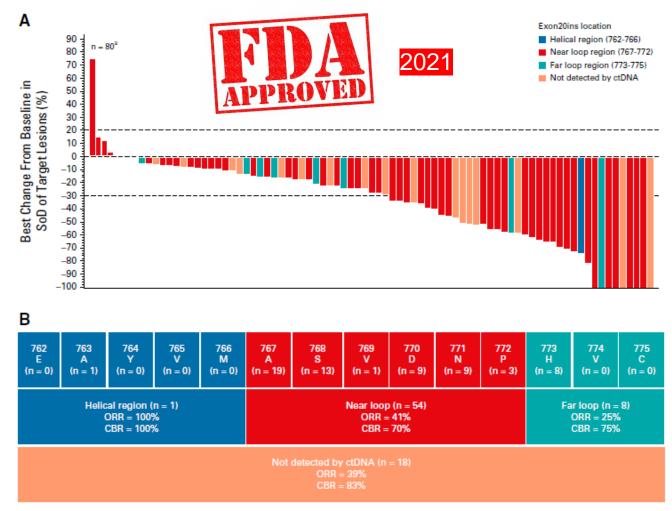
Median OS was 22.8 months (95% CI, 14.6 to not reached)

TABLE 3. Response as Assessed by Blinded Independent Central Review

Response per RECIST	Efficacy Population ($n = 81$)
ORR, % (95% CI) ³	40 (29 to 51)
CBR, % (95% CI) ^b	74 (63 to 83)
Best response, No. (%)	
CR	3 (4)
PR	29 (36)
SD	39 (48)
PD	8 (10)
NE	2 (2)

Median Follow Up: 9,7m (range, 1,1-29.3 m)

Phase I/II


Median PFS was 8.3 months (95% CI, 6.5 to 10.9) by BICR and investigator (95% CI, 5.5 to 10.6)

Median OS was 22.8 months (95% CI, 14.6 to not reached)

TABLE 3. Response as Assessed by Blinded Independent Central Review

Response per RECIST	Efficacy Population ($n = 81$)
ORR, % (95% CI) ³	40 (29 to 51)
CBR, % (95% CI) ^b	74 (63 to 83)
Best response, No. (%)	
CR	3 (4)
PR	29 (36)
SD	39 (48)
PD	8 (10)
NE	2 (2)

Median Follow Up: 9,7m (range, 1,1-29.3 m)

Safety profile (dose-escalation)

<u>Treatment-related dose reductions occurred in 15</u> patients (13%):

Rash (11 [10%]) being most frequently reported.

Five patients (4%) had treatment-related discontinuation:

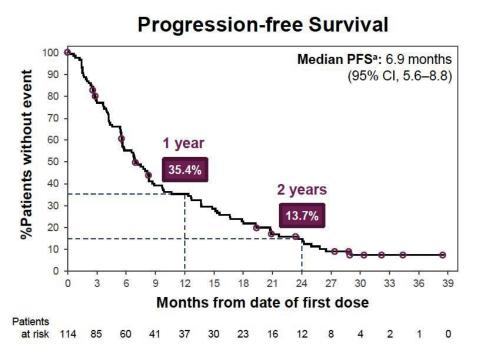
- Rash and IRR in two (1.8%) each
- Paronychia in one (1%).

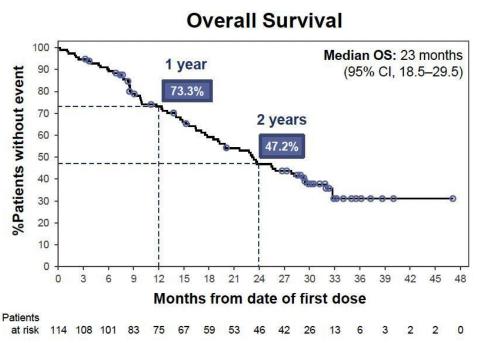
There were no treatment-related grade 5 events.

Median Follow Up: 5,1 m (range, 0,2-29,3 m)

	Safety Population (n $= 114$), No. (%)				Patients Treated at the RP2D (n $=$ 258), No. (%)			
Most Common AE (≥ 10%)	Total, No. (%)	Grade 1, No. (%)	Grade 2, No. (%)	Grade ≥ 3, No. (%)	Total, No. (%)	Grade 1, No. (%)	Grade 2, No. (%)	Grade ≥ 3, No. (%)
Rash ^b	98 (86)	43 (38)	51 (45)	4 (4)	202 (78)	101 (39)	94 (36)	7 (3)
Infusion-related reaction	75 (66)	9 (8)	63 (55)	3 (3)	167 (65)	21 (8)	140 (54)	6 (2)
Paronychia	51 (45)	28 (25)	22 (19)	1 (1)	104 (40)	50 (19)	51 (20)	3 (1)
Hypoalbuminemia	31 (27)	6 (5)	22 (19)	3 (3)	63 (24)	21 (8)	38 (15)	4 (2)
Constipation	27 (24)	18 (16)	9 (8)	0	58 (23)	36 (14)	22 (9)	0
Nausea	22 (19)	17 (15)	5 (4)	0	55 (21)	40 (16)	14 (5)	1 (0.4)
Dyspnea	22 (19)	12 (11)	8 (7)	2 (2)	52 (20)	28 (11)	13 (5)	11 (4)
Stomatitis	24 (21)	11 (10)	13 (11)	0	50 (19)	33 (13)	17 (7)	0
Peripheral edema	21 (18)	20 (18)	1 (1)	0	50 (19)	43 (17)	5 (2)	2 (1)
Pruritus	19 (17)	11 (10)	8 (7)	0	49 (19)	40 (16)	9 (4)	0
Fatigue	21 (18)	15 (13)	4 (4)	2 (2)	47 (18)	29 (11)	16 (6)	2 (1)
Cough	16 (14)	11 (10)	5 (4)	0	40 (16)	25 (10)	15 (6)	0
Decreased appetite	16 (14)	7 (6)	9 (8)	0	39 (15)	23 (9)	16 (6)	0
Dry skin	18 (16)	18 (16)	0	0	33 (13)	32 (12)	1 (0.4)	0
Increased alanine aminotransferase	17 (15)	15 (13)	1 (1)	1 (1)	30 (12)	22 (9)	5 (2)	3 (1)
Vomiting	12 (11)	10 (9)	2 (2)	0	29 (11)	22 (9)	6 (2)	1 (0.4)
Myalgia	14 (12)	12 (11)	2 (2)	0	28 (11)	23 (9)	5 (2)	0
Dizziness	9 (8)	8 (7)	0	1 (1)	28 (11)	24 (9)	3 (1)	1 (0.4)
Headache	8 (7)	4 (4)	3 (3)	1 (1)	28 (11)	17 (7)	8 (3)	3 (1)

TABLE 2. Summary of AFs.


Event	Safety Population (n = 114), No. (%)	Patients Treated at the RP2D ($n = 258$), No. (%)
Any AE	113 (99)	257 (100)
Grade ≥ 3 AE	40 (35)	101 (39)
Serious AE	34 (30)	79 (31)
AF leading to death	8 (7)	13 (5)
AE leading to discontinuation	11 (10)	17 (7)
AE leading to dose reduction	15 (13)	26 (10)
AE leading to dose interruption ^a	40 (35)	88 (34)


Park, J Clin Oncol 2021

Long-term outcomes

- Better if no alterations in RAS/RAF/MEK
- Better if Partial Response

 As of 12 Sept 2022, the median follow-up was 19.2 months and median duration of treatment was 7.5 months, with 48 of 114 (42%) patients alive

MADRID 2023 Congress

Amivantamab Plus Chemotherapy vs Chemotherapy as First-line Treatment in EGFR Exon 20 Insertion—mutated Advanced Non-small Cell Lung Cancer (NSCLC)

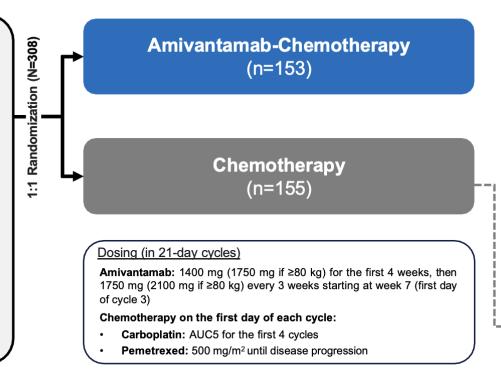
Primary Results From PAPILLON, a Randomized Phase 3 Global Study

Nicolas Girard,¹ Keunchil Park,^{2,*} Ke-Jing Tang,³ Byoung Chul Cho,⁴ Luis Paz-Ares,⁵ Susanna Cheng,⁶ Satoru Kitazono,⁷ Muthukkumaran Thiagarajan,⁸ Jonathan W. Goldman,⁹ Joshua K. Sabari,¹⁰ Rachel E. Sanborn,¹¹ Aaron S. Mansfield,¹² Jen-Yu Hung,¹³ Sanjay Popat,¹⁴ Josiane Mourão,¹⁵ Archan Bhattacharya,¹⁶ Trishala Agrawal,¹⁷ S. Martin Shreeve,¹⁸ Roland E. Knoblauch,¹⁷ Caicun Zhou¹⁹

¹Institut Curie, Institut du Thorax Curie-Montsouris, Paris, France and Paris Saclay University, UVSQ, Versailles, France; ²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ³The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; ⁴Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Hospital Universitario 12 de Octubre, Madrid, Spain; ⁵Sunnybrook Odette Cancer Centre, Toronto, ON, Canada; ¬Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; °General Hospital Kuala Lumpur, Kuala Lumpur, Malaysia; °David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ¹⁰NYU Langone Health, New York, NY, USA; ¹¹Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA; ¹²Mayo Clinic, Rochester, MN, USA; ¹³Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; ¹⁴Royal Marsden Hospital NHS Foundation Trust, London, UK and The Institute of Cancer Research, London, UK; ¹⁵Barretos Cancer Hospital, Barretos, Brazil; ¹⁵Janssen R&D, High Wycombe, UK; ¹¬Janssen R&D, Spring House, PA, USA; ¹⁵Janssen R&D, San Diego, CA USA; ¹⁵Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.

*Current Affiliation: MD Anderson Cancer Center, Houston, TX, USA.

Exon20Ins – AMIVANTAMAB 1L - PAPILLON


Study design

Key Eligibility Criteria

- Treatment-naïve,^a locally advanced or metastatic NSCLC
- Documented EGFR Exon 20 insertion mutations
- ECOG PS 0 or 1

Stratification Factors

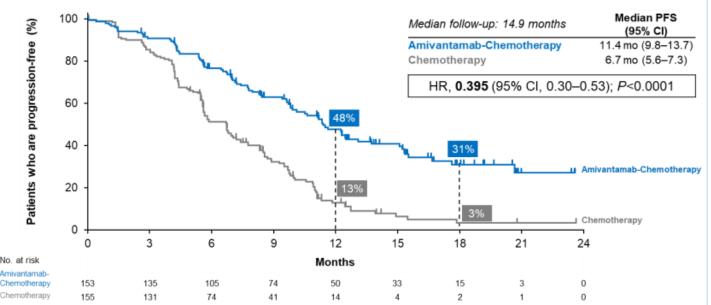
- ECOG PS
- History of brain metastases^b
- Prior EGFR TKI usea

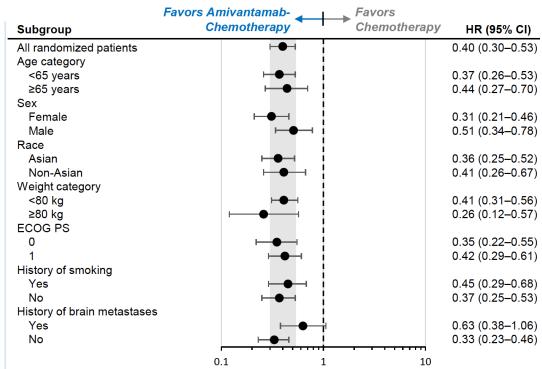
Primary endpoint: Progression-free survival (PFS) by BICR according to RECIST v1.1c

Secondary endpoints:

- Objective response rate (ORR)^c
- · Duration of response (DoR)
- Overall survival (OS)^c
- PFS after first subsequent therapy (PFS2)
- Symptomatic PFS^d
- Time to subsequent therapyd
- Safety

Optional crossover to 2nd-line amivantamab monotherapy^e



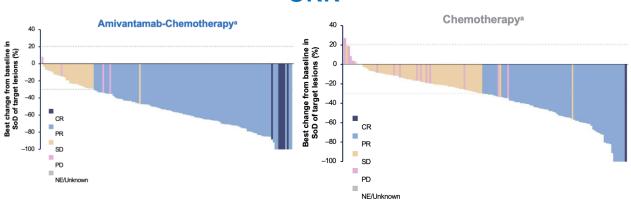

Exon20Ins – AMIVANTAMAB 1L - PAPILLON

Primary objective of the study: PFS by BICR

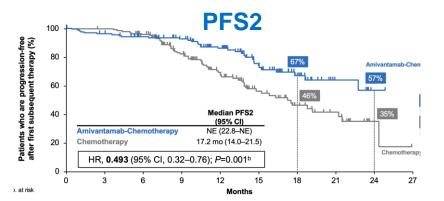
Primary Endpoint: Progression-free Survival by BICR

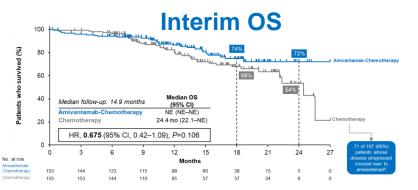
Amivantamab-chemotherapy reduced risk of progression or death by 60%

Consistent PFS benefit by investigator: 12.9 vs 6.9 mo(HR, 0.38; 95% CI, 0.29–0.51; P<0.0001a)



Exon20Ins - AMIVANTAMAB 1L - PAPILLON


Efficacy data


BICR-assessed response ^b	Amivantamab-Chemotherapy (n=153)	Chemotherapy (n=155)
Mean percent change of SoD	-53%°	-34%
ORR	73% (95% CI, 65–80)	47% (95% CI, 39–56)
Odds ratio	3.0 (95% CI, 1.8	3–4.8); <i>P</i> <0.0001
Best response, n (%)		
Complete response	6 (4)	1 (1)
Partial response	105 (69)	71 (47)
Stable disease	29 (19)	62 (41)
Progressive disease	4 (3)	16 (11)
NE/Unknown	8 (5)	2 (1)
Median time to response	6.7 wk (range, 5.1-72.5)	11.4 wk (range, 5.1-60.2)

ORR

Exon20Ins – AMIVANTAMAB 1L - PAPILLON

Safety data

	Amivantamab- Chemotherapy (n=151)	Chemotherapy (n=155)
Median treatment duration, months (range)	9.7 (0.1–26.9)	6.7 (0-25.3)
No. of chemotherapy cycles, median (range)		
Carboplatin	4 (1–4)	4 (1–5)
Pemetrexed	13 (1–34)	10 (1–37)

Treatment-emergent AEs, n (%)	Amivantamab- Chemotherapy (n=151)	Chemotherapy (n=155)
Any AEs	151 (100)	152 (98)
Grade ≥3 AEs	114 (75)	83 (54)
Serious AEs	56 (37)	48 (31)
AEs leading to death	7 (5)	4 (3)
Any AE leading to treatment:		
Interruptions of any agent	104 (69)	56 (36)
Related interruptions of amivantamab	63 (42)	-
Reductions of any agent	73 (48)	35 (23)
Related reductions of amivantamab	54 (36)	_
Discontinuations of any agent	36 (24)	16 (10)
Related discontinuations of amivantamab	10 (7)	_
Discontinuations of all study agents due to AEs	12 (8)	12 (8)

- Similar rate of serious AEs, AEs leading to death and discontinuation due to AEs.
- Treatment-related discontinuations of amivantamab wer low (7%)

Most common AEs of any cause	Amivantamab-Chemotherapy (n=151)		Chemotherapy (n=155)	
by preferred term (≥20%), n (%)	All grades	Grade ≥3	All grades	Grade ≥3
Associated with EGFR inhibition				
Paronychia	85 (56)	10 (7)	0	0
Rash	81 (54)	17 (11)	12 (8)	0
Dermatitis acneiform	47 (31)	6 (4)	5 (3)	0
Stomatitis	38 (25)	2 (1)	9 (6)	0
Diarrhea	31 (21)	5 (3)	20 (13)	2 (1)
Associated with MET inhibition				
Hypoalbuminemia	62 (41)	6 (4)	15 (10)	0
Peripheral edema	45 (30)	2 (1)	16 (10)	0
Other				
Neutropenia	89 (59)	50 (33)	70 (45)	35 (23)
Anemia	76 (50)	16 (11)	85 (55)	19 (12)
Infusion-related reaction	63 (42)	2 (1)	2 (1)	0
Constipation	60 (40)	0	47 (30)	1 (1)
Leukopenia	57 (38)	17 (11)	50 (32)	5 (3)
Nausea	55 (36)	1 (1)	65 (42)	0
Thrombocytopenia	55 (36)	15 (10)	46 (30)	16 (10)
Decreased appetite	54 (36)	4 (3)	43 (28)	2 (1)
Alanine aminotransferase increased	50 (33)	6 (4)	56 (36)	2 (1)
Aspartate aminotransferase increased	47 (31)	1 (1)	51 (33)	1 (1)
COVID-19	36 (24)	3 (2)	21 (14)	1 (1)
Hypokalemia	32 (21)	13 (9)	13 (8)	2 (1)
Vomiting	32 (21)	5 (3)	29 (19)	1 (1)

- EGFR- and MET-related AEs were increased, primarily grade 1-2
- CT-associated hematologic and GI toxicities were comparable except neutropenia
- Neutropenia was transient; majority of events were not serious, low discontinuations
- Pneumonitis was reported in 4 (3%) Amivantamab + CT

Exon20Ins – AMIVANTAMAB 1L - PAPILLON

Safety data

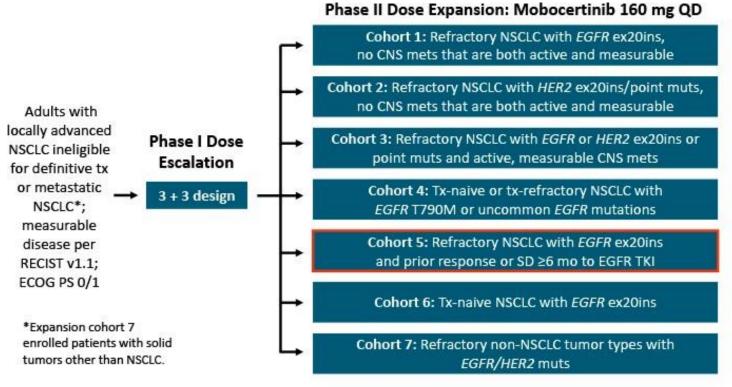
	Amivantamab- Chemotherapy (n=151)	Chemotherapy (n=155)
Median treatment duration, months (range)	9.7 (0.1–26.9)	6.7 (0–25.3)
No. of chemotherapy cycles, median (range)		
Carboplatin	4 (1–4)	4 (1–5)
Pemetrexed	13 (1–34)	10 (1–37)

Most common AEs of any cause	Amivantamab-Chemotherapy (n=151)		Chemotherapy (n=155)		
by preferred term (≥20%), n (%)	All grades	Grade ≥3	All grades	Grade ≥3	
Associated with EGFR inhibition					
Paronychia	85 (56)	10 (7)	0	0	
Rash	81 (54)	17 (11)	12 (8)	0	
Dermatitis acneiform	47 (31)	6 (4)	5 (3)	0	
Stomatitis	38 (25)	2 (1)	9 (6)	0	
Diarrhea	31 (21)	5 (3)	20 (13)	2 (1)	
Associated with MET inhibition					

Amivantamab-chemotherapy represents the new standard of care for first-line *EGFR*Ex20ins advanced NSCLC

interruptions of any agent	10+ (03)	30 (30)
Related interruptions of amivantamab	63 (42)	_
Reductions of any agent	73 (48)	35 (23)
Related reductions of amivantamab	54 (36)	_
Discontinuations of any agent	36 (24)	16 (10)
Related discontinuations of amivantamab	10 (7)	_
Discontinuations of all study agents due to AEs	12 (8)	12 (8)

- Similar rate of serious AEs, AEs leading to death and discontinuation due to AEs.
- Treatment-related discontinuations of amivantamab wer low (7%)


Nausca	55 (56)	1 (1)	00 (1 2)	U
Thrombocytopenia	55 (36)	15 (10)	46 (30)	16 (10)
Decreased appetite	54 (36)	4 (3)	43 (28)	2 (1)
Alanine aminotransferase increased	50 (33)	6 (4)	56 (36)	2 (1)
Aspartate aminotransferase increased	47 (31)	1 (1)	51 (33)	1 (1)
COVID-19	36 (24)	3 (2)	21 (14)	1 (1)
Hypokalemia	32 (21)	13 (9)	13 (8)	2 (1)
Vomiting	32 (21)	5 (3)	29 (19)	1 (1)

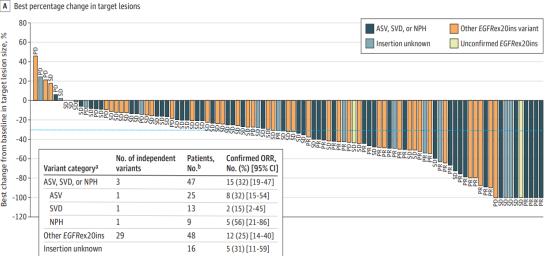
- EGFR- and MET-related AEs were increased, primarily grade 1-2
- CT-associated hematologic and GI toxicities were comparable except neutropenia
- Neutropenia was transient; majority of events were not serious, low discontinuations
- Pneumonitis was reported in 4 (3%) Amivantamab + CT

Exclaim Trial

EXCLAIM Extension Cohort: previously treated advanced NSCLC with EGFR ex20ins

Current analysis:

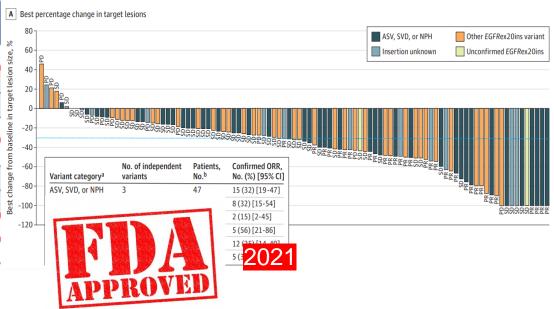
- Patients with refractory EGFR ex20ins+ metastatic NSCLC with disease progression after response or SD for ≥6 mo on prior EGFR TKI therapy (n = 20)
 - Data cutoff: November 1, 2020
 - Median f/u: 14.2 mo (range: 5.2-21.2)


- Primary endpoint (phase II): ORR by RECIST v1.1
- Select secondary endpoints (phase II): ORR by IRC, BOR, DCR, DOR, TTR, PFS, OS, safety/tolerability

Mobocertinib efficacy

Parameter	PPP Cohort (N=114)	EXCLAIM Cohort (N=96)
Median time on treatment, mo (range)	7.0 (0-31)	6.5 (0–14)
Confirmed ORR per IRC, n (%) [95% CI]	30 (26) [19–35]	22 (23) [15–33]
Confirmed ORR per investigator, n (%) [95% CI]	40 (35) [26–45]	31 (32) [23–43]
Median DOR per IRC, mo [95% CI] ^a	17.5 (8.3-NE)	NE (8.3-NE)
Median DOR per investigator, mo [95% CI] ^a	13.9 (5.6-NE)	NE (5.5-NE)
DCR per IRC, n (%) [95% CI] ^b	89 (78) [69–85]	73 (76) [66–84]
DCR per investigator, n (%) [95% CI] ^b	89 (78) [69–85]	72 (75) [65–83]
Median PFS per IRC, mo [95% CI]	7.3 (5.5–10.2)	7.3 (5.5–10.2)
Median PFS per investigator, mo [95% CI]	7.3 (5.5–8.1)	7.1 (5.6–7.8)

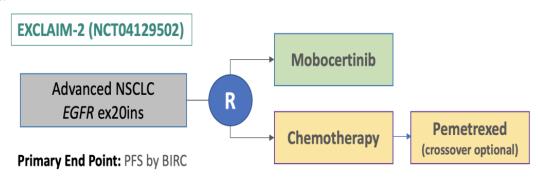
- 78% and 84% of patients had DOR >6 months in PPP and EXCLAIM cohorts, respectively (per IRC)
- At the time of data cutoff, over 50% of responses were ongoing in both cohorts

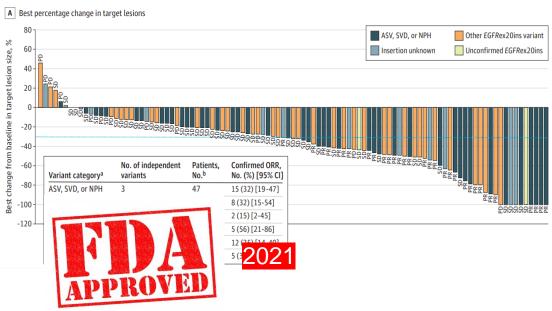


Mobocertinib efficacy

Parameter	PPP Cohort (N=114)	EXCLAIM Cohort (N=96)
Median time on treatment, mo (range)	7.0 (0-31)	6.5 (0–14)
Confirmed ORR per IRC, n (%) [95% CI]	30 (26) [19–35]	22 (23) [15–33] 31 (32) [23–43]
Confirmed ORR per investigator, n (%) [95% CI]	40 (35) [26–45]	31 (32) [23–43]
Median DOR per IRC, mo [95% CI]ª	17.5 (8.3-NE)	NE (8.3-NE)
Median DOR per investigator, mo [95% CI] ^a	13.9 (5.6-NE)	NE (5.5-NE)
DCR per IRC, n (%) [95% CI] ^b	89 (78) [69–85]	73 (76) [66–84]
DCR per investigator, n (%) [95% CI] ^b	89 (78) [69–85]	73 (76) [66–84] 72 (75) [65–83]
Median PFS per IRC, mo [95% CI]	7.3 (5.5–10.2)	7.3 (5.5–10.2)
Median PFS per investigator, mo [95% CI]	7.3 (5.5–8.1)	7.1 (5.6–7.8)

• At the time of data cutoff, over 50% of responses were ongoing in both cohorts



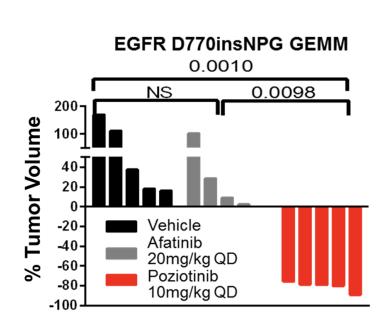


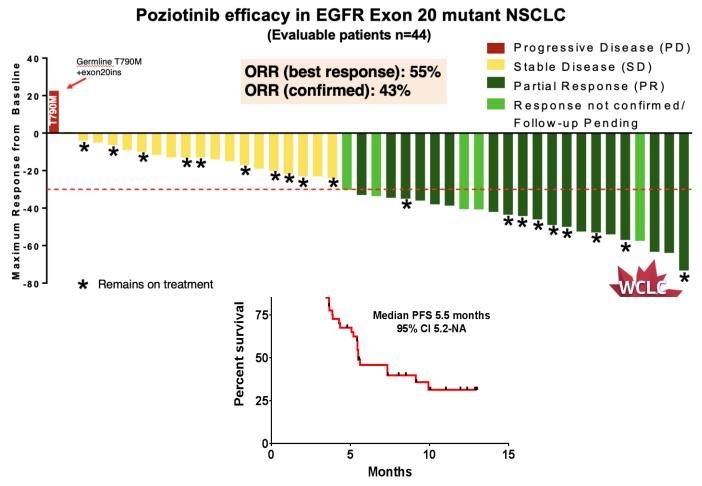
Mobocertinib efficacy

	1.00000000000		
Parameter	PPP Cohort (N=114)	EXCLAIM Cohort (N=96)	
Median time on treatment, mo (range)	7.0 (0-31)	6.5 (0–14)	
Confirmed ORR per IRC, n (%) [95% CI]	30 (26) [19–35]	22 (23) [15–33]	
Confirmed ORR per investigator, n (%) [95% CI]	40 (35) [26–45]	31 (32) [23–43]	
Median DOR per IRC, mo [95% CI] ^a	17.5 (8.3-NE)	NE (8.3-NE)	
Median DOR per investigator, mo [95% CI] ^a	13.9 (5.6-NE)	NE (5.5-NE)	
DCR per IRC, n (%) [95% CI] ^b	89 (78) [69–85]	73 (76) [66–84]	
DCR per investigator, n (%) [95% CI] ^b	89 (78) [69–85]	72 (75) [65–83]	
Median PFS per IRC, mo [95% CI]	7.3 (5.5–10.2)	7.3 (5.5–10.2)	
Median PFS per investigator, mo [95% CI]	7.3 (5.5–8.1)	7.1 (5.6–7.8)	

- 78% and 84% of patients had DOR >6 months in PPP and EXCLAIM cohorts, respectively (per IRC)
- At the time of data cutoff, over 50% of responses were ongoing in both cohorts

Press release on Oct. 02, 2023


Voluntary withdrawal of mobocertinibin the U.S. based on the outcome of the Phase 3 EXCLAIM-2 which **did not meet its primary endpoint**.



Exon20Ins - POZIOTINIB in PRETREATED - ZENITH20 (multicohort phase II)

ZENITH20 Poziotinib efficacy in cohort 1 EGFR Exon20ins

Exon20Ins-directed therapies in pretreated pts: efficacy and toxicity summary

			Efficacy			Toxicity	
Drug	Study	N	ORR	mPFS	Rash all/G3	Diarrhoea	Other
Mobocertinib	II	114	28%	7,3 mo	45%/0%	91%/21%	
Poziotinib	II	42	31%	5,5 mo	90%/34%	92%/22%	
Sunvozertinib	II	104	61%	NR	80%/1%	20%/3%	
Zipalertinib	I/IIa	73	38,4%	10 mo	80%/1%	30%/3%	
Furmonertinib	II	26	46%	NR	21%/0%	86%/0%	

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

OTHER UNCOMMON MUTATIONS

1st Generation TKIs

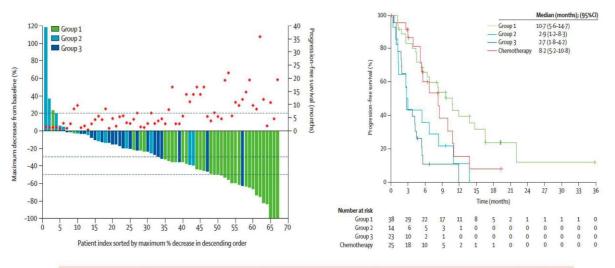
- Not included in pivotal trials
- Retrospective and case reports

2nd Generation TKIs

- Lux-lung 2/3/6 included 11% patients with uncommon mutations (100 uncommon, 75 receiving afatinib
- AFANDA ambispective cohort study with dacomitinib or afatinib

3rd Generation TKIs

- Retrospective multicenter UNICORN study: 60 pts treated with osimertinib
 - -Group A: uncommon.
 - -Group B: common + uncommon
- Phase II UNICORN study with osimertinib: 40 pts
- Phase II KCSG-LU15-09 study with osimertinib: 35 pts



OTHER UNCOMMON MUTATIONS: AFATINIB 1L

2nd Generation TKIs: AFATINIB Lux-Lung 2/3/6 pool

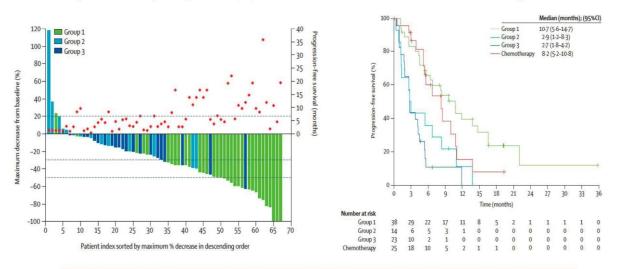
838 pts randomly assigned LL2/3/6 \rightarrow 100 uncommon EGFRm \rightarrow 75 receiving afatinib

		Objective response	Duration of response (months)	Disease control	Progression-free survival (months)	Overall survival (months)
-	Group 1 (n=38)*	27 (71-1%, 54-1-84-6)	11-1 (4-1-15-2)	32 (84·2%, 68·7–94·0)	10-7 (5-6-14-7)	19-4 (16-4-26-9)
	Group 2 (n=14)†	2 (14-3%, 1-8-42-8)	8-2 (4-1-12-4)	9 (64-3%, 35-1-87-2)	2.9 (1.2-8.3)	14.9 (8.1-24.9)
	Group 3 (n=23)‡	2 (8.7%, 1.1-28.0)	7-1 (4-2-10-1)	15 (65-2%, 42-7-83-6)	2.7 (1.8-4.2)	9-2 (4-1-14-2)

Data are n (%, 95% CI) or median (95% CI). *Consists of patients with all point mutations or duplications in exons 18–21 (Leu861GIn, Gly719Ser, Gly719Ala, Gly719Cys, Ser768Ile, and rare others). †Consists of patients with de-novo Thr790Met mutations. ‡Consists of patients with exon 20 insertions.

Genotypes	Genotypes		Median PFS, months (95% CI)	Median OS, months (95% CI)
G719X (n=18)	G719X (n=8) G719X + T790M (n=1) G719X + S768I (n=5) G719X + L861Q (n=3) G719X + T790M + L858R (n=1)	14 (78)	13.8 (6.8-NE)	26.9 (16.4-NE)
L861Q (n=16)	L861Q (n=12) L861Q + G719X (n=3) L861Q + Del19 (n=1)	9 (56)	8.2 (4.5-16.6)	16.9 (15.3-22.0)
S768I (n=8)	S768I (n=1) S768I + G719X (n=5) S768I + L858R (n=2)	8 (100)	14.7 (2.6-NE)	NE (3.4-NE)

Note: A patient may be presented in more than 1 category.



OTHER UNCOMMON MUTATIONS: AFATINIB 1L

2nd Generation TKIs: AFATINIB Lux-Lung 2/3/6 pool

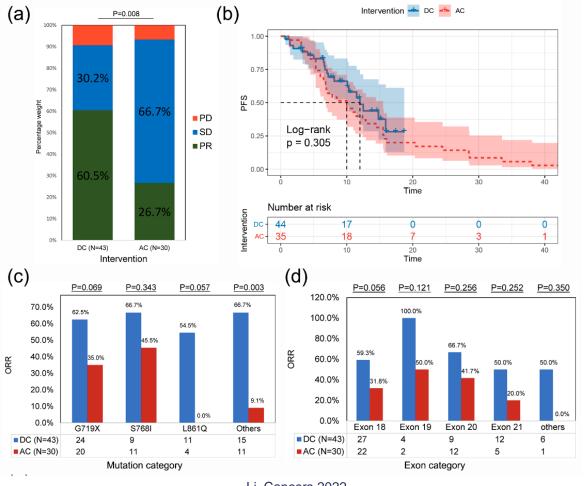
838 pts randomly assigned LL2/3/6 \rightarrow 100 uncommon EGFRm \rightarrow 75 receiving afatinib

		Objective response	Duration of response (months)	Disease control	Progression-free survival (months)	Overall survival (months)	
-	Group 1 (n=38)*	27 (71-1%, 54-1-84-6)	11-1 (4-1-15-2)	32 (84-2%, 68-7-94-0)	10-7 (5-6-14-7)	19-4 (16-4-26-9)	
	Group 2 (n=14)†	2 (14.3%, 1.8-42.8)	8-2 (4-1-12-4)	9 (64-3%, 35-1-87-2)	2.9 (1.2-8.3)	14.9 (8.1-24.9)	
	Group 3 (n=23)‡	2 (8.7%, 1.1-28.0)	7-1 (4-2-10-1)	15 (65-2%, 42-7-83-6)	2.7 (1.8-4.2)	9-2 (4-1-14-2)	
	D-t(N 05N (I)		-fiiskIIi	·	24 /I 064 CI- CI- 7405	Charles Charles	

2018

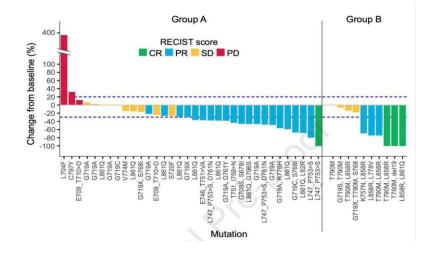
L861Q, G719X and S768I.

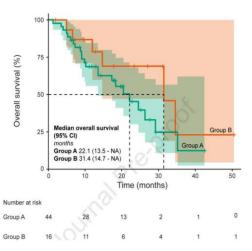
Genotype	s	ORR, n (%)	Median PFS, months (95% CI)	Median OS, months (95% CI)
G719X (n=18)	G719X (n=8) G719X + T790M (n=1) G719X + S768I (n=5) G719X + L861Q (n=3) G719X + T790M + L858R (n=1)	14 (78)	13.8 (6.8-NE)	26.9 (16.4-NE)
L861Q (n=16)	L861Q (n=12) L861Q + G719X (n=3) L861Q + Del19 (n=1)	9 (56)	8.2 (4.5-16.6)	16.9 (15.3-22.0)
S768I (n=8)	S768I (n=1) S768I + G719X (n=5) S768I + L858R (n=2)	8 (100)	14.7 (2.6-NE)	NE (3.4-NE)

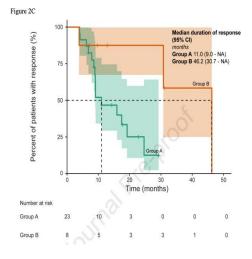

Note: A patient may be presented in more than 1 category.

OTHER UNCOMMON MUTATIONS: DACOMITINIB 1L

2nd Generation TKIs: DACOMITINIB - AFANDA ambispective cohort study in China


Li, Cancers 2022





3rd Generation TKIs: UNICORN retrospective

Table 2. Efficacy of Osimertinib in Various Subgroups								
Patient Subgroups	n (% of 60)	RR ^a (95% CI)	PFS, mo (95% CI)	OS, mo (95% CI)	DOR, mo (95% CI)			
All patients	60 (100)	61 (47-73)	9.5 (8.5-17.4)	24.5 (17.4-35.1)	17.4 (9.1-NA)			
Group A: only uncommon	44 (73)	60 (45-74)	8.6 (7.3-13.5)	22.1 (13.5-NA)	11.0 (9.0-NA)			
Group B: uncommon with L858R/del19 ^b /T790M	16 (27)	61 (35-82)	30.0 (12.7-NA)	31.4 (14.7-NA)	46.2 (30.7-NA)			
G719X	18 (30)	47 (26-69)	8.8 (7.9-NA)	NA (17.4-NA)	9.1 (8.6-NA)			
G719X, group A	16 (27)	53 (30-75)	8.6 (6.9-NA)	18.4 (10.2-NA)	9.1 (8.6-NA)			
L861Q	12 (20)	80 (49-94)	16 (11-NA)	26.3 (22.1-NA)	16 (11-NA)			
L861Q, group A	11 (18)	78 (45-94)	15.7 (8.9-18.8)	25.9 (21.8-NA)	16.0 (9.0-NA)			
T790M	9 (15)	44 (19-73)	12.7 (9.5-NA)	NA (12-NA)	46.2 (3.8-NA)			
TP53 mutant	21 (35)	60 (36-80)	8.5 (6.8-22.1)	26.3 (13.5-NA)	9.0 (7.9-NA)			

Bar, J Thor Oncol 2022

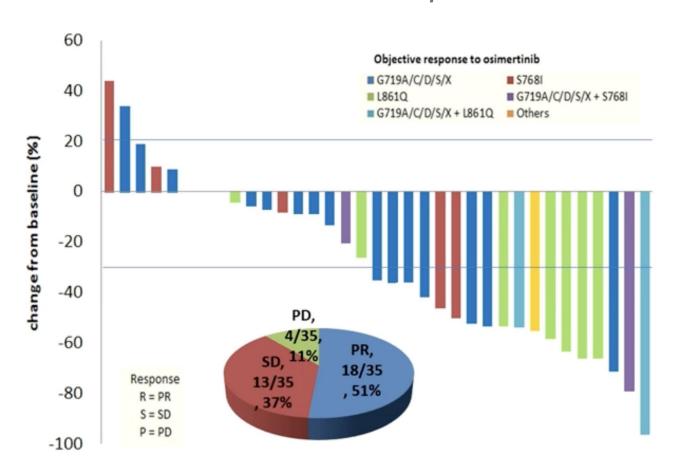
3rd Generation TKIs: UNICORN phase II (Tokyo Cooperative Oncology Group)

Solitary mutations (n = 22)	
Overall response rate, % (90% CI)	45.5 (26.9-65.3)
Disease control rate, % (95% CI)	81.8 (61.5-92.7)
Progression-free survival, median (95% CI), mo	5.4 (3.6-22.7)
Overall survival, median (95% CI), mo	23.0 (12.3-NR)
Duration of response, median (95% CI), mo	22.7 (3.6-22.7)

Compound mutations (n = 18)	
Overall response rate, % (90% CI)	66.7 (43.7-83.7)
Disease control rate, % (95% CI)	100.0 (82.4-100)
Progression-free survival, median (95% CI), mo	9.8 (5.1-NR)
Overall survival, median (95% CI), mo	NR
Duration of response, median (95% CI), mo	NR (5.7-NR)

3rd Generation TKIs: UNICORN phase II (Tokyo Cooperative Oncology Group)

Solitary mutations (n = 22)	
Overall response rate, % (90% CI)	45.5 (26.9-65.3)
Disease control rate, % (95% CI)	81.8 (61.5-92.7)
Progression-free survival, median (95% CI), mo	5.4 (3.6-22.7)
Overall survival, median (95% CI), mo	23.0 (12.3-NR)
Duration of response, median (95% CI), mo	22.7 (3.6-22.7)


Compound mutations (n = 18)	
Overall response rate, % (90% CI)	66.7 (43.7-83.7)
Disease control rate, % (95% CI)	100.0 (82.4-100)
Progression-free survival, median (95% CI), mo	9.8 (5.1-NR)
Overall survival, median (95% CI), mo	NR
Duration of response, median (95% CI), mo	NR (5.7-NR)

Uncommon and uncommon mutations (n = 11)		Common and uncommon mutations (n = 7)	
Overall response rate, % (90% CI)	54.5 (28.0-78.7)	Overall response rate, % (90% CI)	85.7 (54.8-96.)
Disease control rate, % (95% CI)	100.0 (74.1-100.0)	Disease control rate, % (95% CI)	100.0 (64.6-100.0)
Progression-free survival, median (95% CI), mo	9.7 (3.7-NR)	Progression-free survival, median (95% CI), mo	15.2 (2.9-NR)
Overall survival, median (95% CI), mo	NR (9.8-NR)	Overall survival, median (95% CI), mo	NR (9.7-NR)
Duration of response, median (95% CI), mo	NR (5.6-22.7)	Duration of response, median (95% CI), mo	NR (5.8-NR)

3rd Generation TKIs: KCSG-LU15-09 phase II

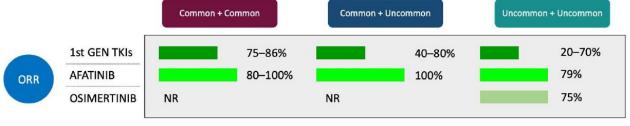
L861Q: RR 78%

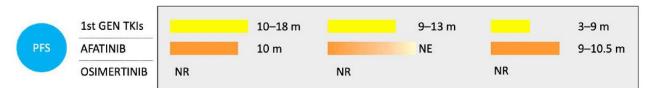
Clinical response	Osimertinib (n=35)
Objective response rate (95% CI)	51% (34, 68)
Disease control rate (95% CI)	89% (78, 99)
Median progression-free survival, months (95% CI)	8.0 (5.7, 10.3)
Median overall survival, months (95% CI)	27.0 (19.3, 34.7)
Median duration of response, months (95% CI)	13.0 (9.1, 16.9)
Median progression-free survival 2, months (95% CI)	16.0 (8.5, 23.5)

⁻Median follow-up duration: 61.0 months

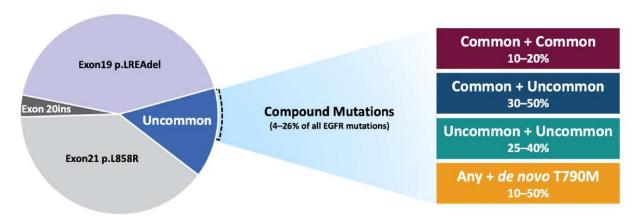
- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions





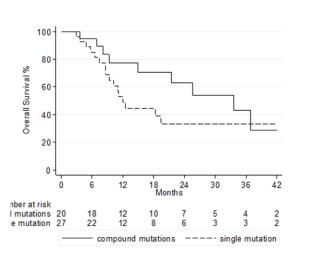
COMPOUND EGFR MUTATIONS


Frequency and subtypes according to a 2022 Systematic Review

Study	Region	Patients Screened (N)	Testing Method	EGFR Mut Rate (N, %)	EGFR Compound Mut Rate (N, % of EGFR Mut)
Syahruddin et al., 2018 [7]	Indonesian	1779	PCR HRM RFLP	791 (44.4)	154 (19.5)
Zaini et al., 2019 [8]	Indonesian	116	PCR HRM RFLP	69 (63.2)	18 (26)
Jing et al., 2018 [9]	China	112	NGS	58 (51.8)	11 (18.9)
Mao et al., 2021 [11]	China	21,324	NGS + qPCR + Sanger	9,621 (47.5)	642 (6.7)
Wen et al., 2019 [14]	China	1200	NGS	571(47.6)	87 (15.3)
Zhou et al., 2021 [12]	SW China (Q vs. non-Q)	2146	ARMS-PCR	346 (46) Q 710 (51) non-Q	151 (43.6) Q 74 (10.4) non-Q
Namba et al., 2019 [10]	Japan	531	MBS	64 (n.e.) ¹	8 (12.5)
Shi et al., 2013 [13]	Malaysia	484	ARMS + HRM	221 (45.7)	9 (4)
Evans et al., 2019 [15]	ΕÚ	17,782	qPCR	1,737 (10.7)	79 (4.9)
Sousa et al., 2020 [17]	EU	1228	Sanger	252 (20.5)	19 (7.5)
Martin et al., 2019 [16]	EU	2906	Sanger	408 (14)	22 (5.4)

*Sensitivity of the co-mutation drivers the overall response to different TKIs

Potential activity


 $3rd G^* > 2nd G > 1st G$

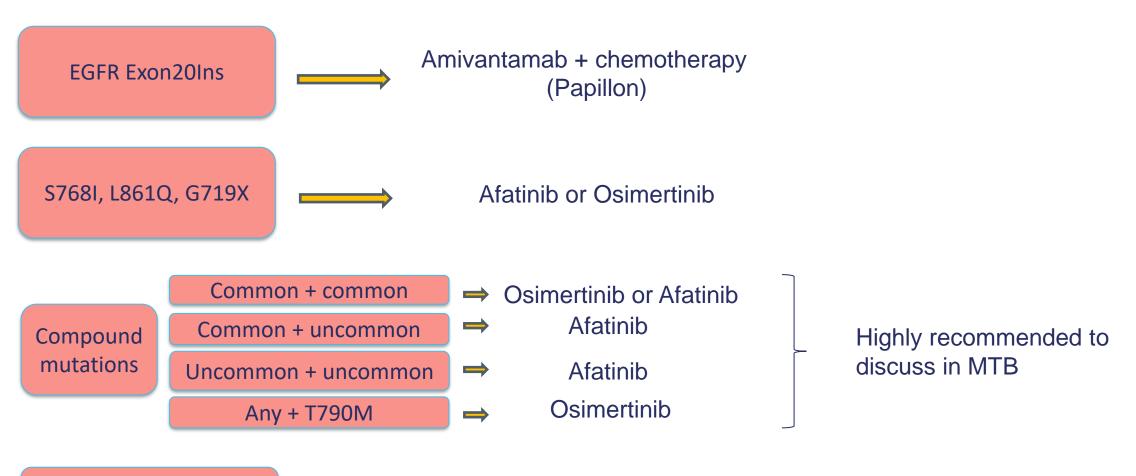
2nd G > 3rd G* > 1st G

2nd G > 3rd G

3rd G

*lacking data

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions



- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

So...how to treat uncommon EGFR mutations?

Other rare mutations

Discuss in MTB, search evidence in a database as OncoKB, consider 2nd/3erd G depending on available evidence

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

- 1. Uncommon EGFR mutation subtypes and classification
- 2. Molecular testing options
- 3. Exon 20 Insertions
- 4. Other uncommon EGFR point mutations
- 5. Compound mutations
- 6. How to treat uncommon mutations algorithm
- 7. Conclussions

TAKE HOME MESSAGES

- Sensitive methods sequencing the entire EGFR gene is recommended to identify and characterize uncommon mutations, NGS preferred.
- Exon20Ins is a distinct entity with low activity of classical TKIs
 - Amivantamab + chemotherapy significantly improved PFS vs chemo in 1st line (new SoC)
 - Several promising specific TKIs in development
- EGFR TKIs should be considered in frontline treatment of G719X, L861X and S768I
 - Available evidence suggest better outcomes with 2nd G TKIs (afatinib) in G719X and S768I and 3rd G in L861Q
- Few clinical data in compound mutations
 - Sensitivity of the co-mutation drivers the overall response to different TKIs
- Further research is needed

